One simple graph, the stem-and-leaf graph or stemplot, comes from the field of exploratory data analysis. It is a good choice when the data sets are small. To create the plot, divide each observation of data into a stem and a leaf. The leaf consists of a final significant digit. For example, 23 has stem two and leaf three. The number 432 has stem 43 and leaf two. Likewise, the number 5,432 has stem 543 and leaf two. The decimal 9.3 has stem nine and leaf three. Write the stems in a vertical line from smallest to largest. Draw a vertical line to the right of the stems. Then write the leaves in increasing order next to their corresponding stem.
For Susan Dean's spring pre-calculus class, scores for the first exam were as follows (smallest to largest):
33; 42; 49; 49; 53; 55; 55; 61; 63; 67; 68; 68; 69; 69; 72; 73; 74; 78; 80; 83; 88; 88; 88; 90; 92; 94; 94; 94; 94; 96; 100
Stem | Leaf |
---|---|
3 | 3 |
4 | 2 9 9 |
5 | 3 5 5 |
6 | 1 3 7 8 8 9 9 |
7 | 2 3 4 8 |
8 | 0 3 8 8 8 |
9 | 0 2 4 4 4 4 6 |
10 | 0 |
The stemplot shows that most scores fell in the 60s, 70s, 80s, and 90s. Eight out of the 31 scores or approximately 26% ( 8 31 ) ( 8 31 ) were in the 90s or 100, a fairly high number of As.
For the Park City basketball team, scores for the last 30 games were as follows (smallest to largest):
32; 32; 33; 34; 38; 40; 42; 42; 43; 44; 46; 47; 47; 48; 48; 48; 49; 50; 50; 51; 52; 52; 52; 53; 54; 56; 57; 57; 60; 61
Construct a stem plot for the data.
The stemplot is a quick way to graph data and gives an exact picture of the data. You want to look for an overall pattern and any outliers. An outlier is an observation of data that does not fit the rest of the data. It is sometimes called an extreme value. When you graph an outlier, it will appear not to fit the pattern of the graph. Some outliers are due to mistakes (for example, writing down 50 instead of 500) while others may indicate that something unusual is happening. It takes some background information to explain outliers, so we will cover them in more detail later.
The data are the distances (in kilometers) from a home to local supermarkets. Create a stemplot using the data:
1.1; 1.5; 2.3; 2.5; 2.7; 3.2; 3.3; 3.3; 3.5; 3.8; 4.0; 4.2; 4.5; 4.5; 4.7; 4.8; 5.5; 5.6; 6.5; 6.7; 12.3
Do the data seem to have any concentration of values?
The leaves are to the right of the decimal.
The value 12.3 may be an outlier. Values appear to concentrate at three and four kilometers.
Stem | Leaf |
---|---|
1 | 1 5 |
2 | 3 5 7 |
3 | 2 3 3 5 8 |
4 | 0 2 5 5 7 8 |
5 | 5 6 |
6 | 5 7 |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | 3 |
The following data show the distances (in miles) from the homes of off-campus statistics students to the college. Create a stem plot using the data and identify any outliers:
0.5; 0.7; 1.1; 1.2; 1.2; 1.3; 1.3; 1.5; 1.5; 1.7; 1.7; 1.8; 1.9; 2.0; 2.2; 2.5; 2.6; 2.8; 2.8; 2.8; 3.5; 3.8; 4.4; 4.8; 4.9; 5.2; 5.5; 5.7; 5.8; 8.0
A side-by-side stem-and-leaf plot allows a comparison of the two data sets in two columns. In a side-by-side stem-and-leaf plot, two sets of leaves share the same stem. The leaves are to the left and the right of the stems. Table 2.4 and Table 2.5 show the ages of presidents at their inauguration and at their death. Construct a side-by-side stem-and-leaf plot using this data.
Ages at Inauguration | Ages at Death | |
---|---|---|
9 9 8 7 7 7 6 3 2 | 4 | 6 9 |
8 7 7 7 7 6 6 6 5 5 5 5 4 4 4 4 4 2 2 1 1 1 1 1 0 | 5 | 3 6 6 7 7 8 |
9 8 5 4 4 2 1 1 1 0 | 6 | 0 0 3 3 4 4 5 6 7 7 7 8 |
7 | 0 1 1 1 2 3 4 7 8 8 9 | |
8 | 0 1 3 5 8 | |
9 | 0 0 3 3 |
President | Age | President | Age | President | Age |
---|---|---|---|---|---|
Washington | 57 | Lincoln | 52 | Hoover | 54 |
J. Adams | 61 | A. Johnson | 56 | F. Roosevelt | 51 |
Jefferson | 57 | Grant | 46 | Truman | 60 |
Madison | 57 | Hayes | 54 | Eisenhower | 62 |
Monroe | 58 | Garfield | 49 | Kennedy | 43 |
J. Q. Adams | 57 | Arthur | 51 | L. Johnson | 55 |
Jackson | 61 | Cleveland | 47 | Nixon | 56 |
Van Buren | 54 | B. Harrison | 55 | Ford | 61 |
W. H. Harrison | 68 | Cleveland | 55 | Carter | 52 |
Tyler | 51 | McKinley | 54 | Reagan | 69 |
Polk | 49 | T. Roosevelt | 42 | G.H.W. Bush | 64 |
Taylor | 64 | Taft | 51 | Clinton | 47 |
Fillmore | 50 | Wilson | 56 | G. W. Bush | 54 |
Pierce | 48 | Harding | 55 | Obama | 47 |
Buchanan | 65 | Coolidge | 51 |
President | Age | President | Age | President | Age |
---|---|---|---|---|---|
Washington | 67 | Lincoln | 56 | Hoover | 90 |
J. Adams | 90 | A. Johnson | 66 | F. Roosevelt | 63 |
Jefferson | 83 | Grant | 63 | Truman | 88 |
Madison | 85 | Hayes | 70 | Eisenhower | 78 |
Monroe | 73 | Garfield | 49 | Kennedy | 46 |
J. Q. Adams | 80 | Arthur | 56 | L. Johnson | 64 |
Jackson | 78 | Cleveland | 71 | Nixon | 81 |
Van Buren | 79 | B. Harrison | 67 | Ford | 93 |
W. H. Harrison | 68 | Cleveland | 71 | Reagan | 93 |
Tyler | 71 | McKinley | 58 | ||
Polk | 53 | T. Roosevelt | 60 | ||
Taylor | 65 | Taft | 72 | ||
Fillmore | 74 | Wilson | 67 | ||
Pierce | 64 | Harding | 57 | ||
Buchanan | 77 | Coolidge | 60 |
The table shows the number of wins and losses the Atlanta Hawks have had in 42 seasons. Create a side-by-side stem-and-leaf plot of these wins and losses.
Losses | Wins | Year | Losses | Wins | Year |
---|---|---|---|---|---|
34 | 48 | 1968–1969 | 41 | 41 | 1989–1990 |
34 | 48 | 1969–1970 | 39 | 43 | 1990–1991 |
46 | 36 | 1970–1971 | 44 | 38 | 1991–1992 |
46 | 36 | 1971–1972 | 39 | 43 | 1992–1993 |
36 | 46 | 1972–1973 | 25 | 57 | 1993–1994 |
47 | 35 | 1973–1974 | 40 | 42 | 1994–1995 |
51 | 31 | 1974–1975 | 36 | 46 | 1995–1996 |
53 | 29 | 1975–1976 | 26 | 56 | 1996–1997 |
51 | 31 | 1976–1977 | 32 | 50 | 1997–1998 |
41 | 41 | 1977–1978 | 19 | 31 | 1998–1999 |
36 | 46 | 1978–1979 | 54 | 28 | 1999–2000 |
32 | 50 | 1979–1980 | 57 | 25 | 2000–2001 |
51 | 31 | 1980–1981 | 49 | 33 | 2001–2002 |
40 | 42 | 1981–1982 | 47 | 35 | 2002–2003 |
39 | 43 | 1982–1983 | 54 | 28 | 2003–2004 |
42 | 40 | 1983–1984 | 69 | 13 | 2004–2005 |
48 | 34 | 1984–1985 | 56 | 26 | 2005–2006 |
32 | 50 | 1985–1986 | 52 | 30 | 2006–2007 |
25 | 57 | 1986–1987 | 45 | 37 | 2007–2008 |
32 | 50 | 1987–1988 | 35 | 47 | 2008–2009 |
30 | 52 | 1988–1989 | 29 | 53 | 2009–2010 |
Another type of graph that is useful for specific data values is a line graph. In the particular line graph shown in Example 2.4, the x-axis (horizontal axis) consists of data values and the y-axis (vertical axis) consists of frequency points. The frequency points are connected using line segments.
In a survey, 40 mothers were asked how many times per week a teenager must be reminded to do his or her chores. The results are shown in Table 2.7 and in Figure 2.2.
Number of times teenager is reminded | Frequency |
---|---|
0 | 2 |
1 | 5 |
2 | 8 |
3 | 14 |
4 | 7 |
5 | 4 |
In a survey, 40 people were asked how many times per year they had their car in the shop for repairs. The results are shown in Table 2.8. Construct a line graph.
Number of times in shop | Frequency |
---|---|
0 | 7 |
1 | 10 |
2 | 14 |
3 | 9 |
Bar graphs consist of bars that are separated from each other. The bars can be rectangles or they can be rectangular boxes (used in three-dimensional plots), and they can be vertical or horizontal. The bar graph shown in Example 2.5 has age groups represented on the x-axis and proportions on the y-axis.
By the end of 2011, Facebook had over 146 million users in the United States. Table 2.9 shows three age groups, the number of users in each age group, and the proportion (%) of users in each age group. Construct a bar graph using this data.
Age groups | Number of Facebook users | Proportion (%) of Facebook users |
---|---|---|
13–25 | 65,082,280 | 45% |
26–44 | 53,300,200 | 36% |
45–64 | 27,885,100 | 19% |